Study of cover source mismatch in steganalysis and ways to mitigate its impact

نویسندگان

  • Jan Kodovský
  • Vahid Sedighi
  • Jessica J. Fridrich
چکیده

When a steganalysis detector trained on one cover source is applied to images from a different source, generally the detection error increases due to the mismatch between both sources. In steganography, this situation is recognized as the so-called cover source mismatch (CSM). The drop in detection accuracy depends on many factors, including the properties of both sources, the detector construction, the feature space used to represent the covers, and the steganographic algorithm. Although well recognized as the single most important factor negatively affecting the performance of steganalyzers in practice, the CSM received surprisingly little attention from researchers. One of the reasons for this is the diversity with which the CSM can manifest. On a series of experiments in the spatial and JPEG domains, we refute some of the common misconceptions that the severity of the CSM is tied to the feature dimensionality or their “fragility.” The CSM impact on detection appears too difficult to predict due to the effect of complex dependencies among the features. We also investigate ways to mitigate the negative effect of the CSM using simple measures, such as by enlarging the diversity of the training set (training on a mixture of sources) and by employing a bank of detectors trained on multiple different sources and testing on a detector trained on the closest source.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extended feature set for blind image steganalysis in contourlet domain

The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...

متن کامل

Steganalysis of embedding in difference of image pixel pairs by neural network

In this paper a steganalysis method is proposed for pixel value differencing method. This steganographic method, which has been immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is di_erent as compared with a cover image. A number of characteristics are identified in the di...

متن کامل

Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch

Since the BOSS competition, in 2010, most steganalysis approaches use a learning methodology involving two steps: feature extraction, such as the Rich Models (RM), for the image representation, and use of the Ensemble Classifier (EC) for the learning step. In 2015, Qian et al. have shown that the use of a deep learning approach that jointly learns and computes the features, is very promising fo...

متن کامل

Unsupervised Steganalysis Based on Artificial Training Sets

In this paper, an unsupervised steganalysis method that combines artificial training sets and supervised classification is proposed. We provide a formal framework for unsupervised classification of stego and cover images in the typical situation of targeted steganalysis (i.e., for a known algorithm and approximate embedding bit rate). We also present a complete set of experiments using 1) eight...

متن کامل

Eigenvalues-based LSB steganalysis

So far, various components of image characteristics have been used for steganalysis, including the histogram characteristic function, adjacent colors distribution, and sample pair analysis. However, some certain steganography methods have been proposed that can thwart some analysis approaches through managing the embedding patterns. In this regard, the present paper is intended to introduce a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014